COMPARISON OF EVALUATION METRICS FOR SENTENCE BOUNDARY DETECTION

Yang Liut

Elizabeth Shriberg??

!University of Texas at Dallas, Dept. of Computer Science, Richardson, TX, U.S.A
2SRI International, Menlo Park, CA, U.S.A
3International Computer Science Institute, Berkeley, CA, U.S.A

ABSTRACT

Automatic detection of sentences in speech is useful to enrich speech
recognition output and ease subsequent language processing mod-
ules. In the recent NIST evaluations for this task, an error rate was
used to evaluate system performance. A variety of metrics such as
F-measure, ROC or DET curves have also been explored in other
studies. This paper aims to take a closer look at the evaluation is-
sue for sentence boundary detection. We employ different metrics,
NIST error rate, classification error rate per word boundary, preci-
sion and recall, ROC curve, DET curve, precision-recall curve, and
the area under the curves, to compare different system output. In ad-
dition, we use two different corpora in order to evaluate the impact
of different imbalance in the data set. We show that it is helpful to
use curves as well as a single performance metric, and that different
curves show different advantages in visualization. Furthermore, the
data skewness also has an impact on the metrics.

Index Terms— speech processing

1. INTRODUCTION

Sentence boundary detection has received much attention recently in
order to enrich speech recognition output for better readability and
help subsequent language processing modules. Automatic sentence
boundary detection was evaluated in the recent NIST rich transcrip-
tion evaluations. In addition, studies have been conducted to evalu-
ate the impact of sentence segmentation on downstream tasks such
as speech translation, parsing, and speech summarization [1, 2, 3].

It is not clear what is the best performance metric for the sen-
tence boundary detection task. In the NIST evaluation, system per-
formance was evaluated using an error rate, that is, the total number
of inserted and deleted boundaries divided by the number of refer-
ence boundaries. ROC curve, DET curve, and F-measure have also
been used in different other studies [2, 4]. Of course, since the ulti-
mate goal is to help downstream language processing tasks, a proper
way to evaluate sentence boundary detection would be to look at the
impact on the downstream tasks. In fact in [2], it was shown that the
optimal segmentation for parsing is indeed different from that ob-
tained when optimizing just for sentence boundary detection (using
aforementioned NIST metric).

It helps system development to use a stand alone metric for the
sentence boundary task itself. In this paper, our goal is to exam-
ine various evaluation metrics and their relationship. In addition, we
evaluate the effect of different priors of the event of interest (i.e., sen-
tence boundaries) by using different corpora. Unlike most studies in
machine learning, this work focuses on a real language processing
task. The study is expected to help us better understand evaluation
metrics that will be generalizable to many similar language process-
ing tasks, such as disfluency detection, story segmentation.

The rest of this paper is organized as follows. Section 2 de-
scribes the different metrics we use and their relationship. In Section
3, we use the RT04 NIST evaluation data to analyze different mea-
sures. Summary appears in Section 4. (DELETE IF NOT ENOUGH
SPACE)

2. METRICS

The task is to determine where the sentence boundaries are when
given a word sequence (typically from a speech recognizer) along
with the speech signal. We use the reference transcription for the
study in this paper, and thus focusing on the evaluation issues and
avoiding the compound effect due to speech recognition errors. We
can represent this as a classification or detection task, i.e., for each
word boundary, is there a sentence boundary or not?

Table 1 shows a confusion matrix and the notation we use in
order to easily describe various metrics for sentence boundary de-
tection evaluation. For a given task, the total number of samples
is tp + fp + fp + tn, and the total number of positive samples is
tp+ fn.

system true | system false
reference true tp fn
reference false fp tn

Table 1. A confusion matrix for the system output. “True” means
positive examples, i.e., sentence boundaries in this task.

2.1. Metrics

Many metrics have been used for evaluating sentence boundary de-
tection or similar tasks, in addition to the ones examined in this study
(details discussed in the following). For example, it can be evaluated
for a particular downstream processing, parsing [2], machine trans-
lation [1], summarization [3]. In [5, 6], metrics are developed that
treat the sentences as units and measure whether the reference and
hypothesized sentences match exactly. Slot error rate [7] was intro-
duced first for information extraction task, and later used for sen-
tence boundary detection. Kappa statistics have often been used to
evaluate human annotation consistency, and can also be used to eval-
uate system performance, i.e., treating system output as a ‘human’
annotation. There are other metrics in the general classification tasks
that have not been widely used for sentence boundary detection. For
example, cost curves [8] were introduced to easily show the expected
cost versus the operating points. The following describes the metrics
we will examine in this paper.

e NIST metric. The NIST error rate is the sum of the inser-
tion and deletion errors per the number of reference sentence
boundaries. Using the notation in Table 1, this becomes:
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fn+fp

NIST error rate =
tp+ fn

Note that the NIST evaluation tool mdeval' allows bound-
aries within a small window to match up, in order to take
into account the different alignments from speech recogniz-
ers. We ignore those in this study and simply treat the task as
a straightforward classification task.

o Classification error rate. If this task is represented as a clas-
sification task for each interword boundary point, then the
classification error rate is:

/n+fp

CEFER= ——————
tp+ fn+ fp+in

e Precision and recall. These are widely used in information re-
trieval, defined as follows.

precision = _tr_
tp+ fp
ip
recall = ——— 1
tp+ fn M

A single metric is often used to account for the trade off be-
tween these two:

2 X precision X recall

F-measure = —
precision + recall

e ROC curve. Receiver operating characteristics (ROC) curves
are used for decision making in many detection tasks. It

shows the relationship between the true positive (=tpt+—pfn)

and the false positive (= ) as the decision threshold varies.

fp
fot+fn
e Precision-recall (PR) curve. This curve shows what happens
to precision and recall as we vary the decision threshold.

e DET curve. Detection error tradeoff (DET) curve plots the
miss rate (= 1 - true positive) versus the false alarms (i.e.,
false positive), using the normal deviate scale [9]. It is widely
used in the speaker recognition task, but not so often in other
classification problems.

e AUC. The curves above provide a good view for the system’s
performance at different decision points. However, a single
number is often preferred when comparing two curves or two
models. Area under the curves (AUC) is used for this pur-
pose. This is used for both ROC and PR curves, but not much
for the DET curves.?

2.2. Relationship

For a task being evaluated, the number of positive samples (i.e.,
np = tp+ fn) and the total number of samples (i.e., tp+ fn+ fp+
tn) are fixed. Therefore, precision and recall uniquely determine the
confusion matrix, and thus the NIST error rate and classification er-
ror rate. Each of the two error rates can uniquely determine the other
one, as they are proportional. However, from the two error rates
(without detailed information about insertion or deletion errors), we
cannot infer the precision and recall rate.

The ROC and PR curves are one-to-one mapping curves. Each
point in one curve uniquely determines the confusion matrix, and
thus the point in the other curve. For the ROC and PR curves, it has

IThe scoring tool is available from http://www.nist.gov/speech/tests/rt/
rt2004/fall/tools/.

2For the DET curves, single metrics such as EER (equal error rate) and
DCEF (detection cost function) are often used in speaker recognition.

been shown that if a curve is dominant in one space, then it is also
dominant in the other [10]. Such a relationship also holds for the
ROC and DET curves. This is straightforward from the definition of
these curves — true positive versus false positive in ROC curves; and
miss probability (i.e., 1 - true positive) versus false positive on the
scale of the normal deviation in DET curves. Since normal deviation
is a monotonic function, changing the axis to normal deviation scale
still preserves the property of being dominant.

3. ANALYSIS ON RT04 DATA SET
3.1. Sentence boundary detection task setup

We used the RT04 NIST evaluation data, conversational telephone
speech (CTS) and broadcast news speech (BN). The total number
of words in the test set is about 4.5K in BN and 3.5K in CTS. The
percentage of sentences’ is different across the corpora, about 14%
on CTS and 8% on BN. Comparing the two corpora allows us to
investigate the effect of imbalanced data on the metrics.

System output is based on the ICSI+SRI+UW sentence bound-
ary detection system [4]. Five different models are used in this study,
prosody alone, language model (LM) alone, HMM, maximum en-
tropy (Maxent) model, and the combination of HMM and Maxent.*
For all these approaches, there is a posterior probability generated
for each interword boundary, which we use to plot the curves or set
the decision threshold for a single metric.

3.2. Analysis

Table 2 shows different single performance measures for sentence
boundary detection for CTS and BN. A threshold of 0.5 is used to
generate the hard decision for each boundary point. Note that the
results shown here are slightly different from those in [4], due to the
difference in the practice of scoring. In addition to not using the
NIST scoring tool mdeval, we used the recognizer forced alignment
output (slightly different from the original transcripts) as the word
sequence and performed sentence boundary detection upon it. The
reference boundaries were obtained by matching the original sen-
tence boundaries to the alignment output.

Figure 1 shows the ROC, PR, and DET curves for the five mod-
els on CTS and BN. The points shown in the PR curves correspond
to using 0.5 as the decision threshold (i.e., the results shown in Table
2). The points for HMM, Maxent, and the combination of them are
close to each other, and thus we did not use separate arrows for them.

In Table 2, for almost all the cases (except the recall on CTS), the
combination of HMM and Maxent achieves the best performance.
However, in this study, our goal is not to determine the best model
to optimize a single performance metric. We are more interested in
looking at different system output and how to evaluate them. The
curves also show that generally HMM, Maxent, and their combi-
nation are close to each other, and much better than the other two
curves for the prosody and LM, on both CTS and BN.

e Domain and metric

BN and CTS have different speaking style and class distribu-
tions (priors of sentence boundaries), and thus comparisons
across the two domains using some single metrics may not
be informative. For example, the CER is similar across the
two domains, but to some extent that is because of the higher
skewness on BN than CTS. Using other metrics such as NIST

3In the EARS program, the sentence-like units were called “SU”s. See
[11] for the definition of them in spoken language.
“4Details of the modeling approaches can be found in [4].



BN CTS

Prosody LM HMM | Maxent | HMM+Maxent | Prosody LM HMM | Maxent | HMM+Maxent
NIST error rate (%) 73.86 7431 | 52.58 50.21 47.87 53.94 4022 | 29.42 28.38 27.78
CER (%) 6.10 6.14 434 4.15 3.96 7.6 5.79 423 4.08 4.00
Precision 0.751 0.751 | 0.821 0.822 0.845 0.864 0.842 | 0.876 0.894 0.896
Recall 0.391 0.384 | 0.606 0.635 0.639 0.547 0.736 | 0.823 0.812 0.817
F-measure 0.514 0.508 | 0.698 0.717 0.727 0.670 0.785 | 0.848 0.851 0.855
ROC AUC 0.893 0.941 | 0.978 0.975 0.981 0.928 0.969 | 0.985 0.984 0.987
PR AUC 0.601 0.652 | 0.804 0.815 0.832 0.791 0.878 | 0.929 0.934 0.938

Table 2. Different performance measures for sentence boundary detection in CTS and BN. The decision threshold is 0.5.
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Fig. 1. ROC, PR, and DET curves for CTS for five different systems: Prosody, LM, HMM, Maxent, and the combination of HMM and
Maxent.



error rate, precision/recall can better account for such data im-
balance. As expected, using ROC curves for imbalanced data
may hide some difference among classifiers and also between
different tasks. AUC for the ROC curves is quite high for
both BN and CTS; whereas, in the PR space, the difference
between BN and CTS is more noticeable. The PR curves and
the associated AUC values are much worse in BN than CTS.
For the imbalanced data, PR curves often have advantages in
exposing the difference between algorithms. DET curves also
better illustrate the difference between the curves across the
two corpora (e.g., the slopes of the curves).

Domain, models, and metrics

There is some difference between models across the two do-
mains. On BN, using only the prosody model performs sim-
ilarly to or slightly better than the LM alone, in terms of er-
ror rate, precision, and recall. However, the AUC values for
the prosody model is worse than LM, for both ROC and PR
curves. As shown from the PR curve, in the region around the
decision threshold (and also the region to the left, i.e., with
lower recall), the prosody curve is better than LM, but not in
other regions. Overall, the AUC from the prosody PR curve
is worse than LM. Therefore, using the curves helps to deter-
mine what model or system output is better for the region of
interest. In BN, the PR curves for the prosody model and the
LM cross in the middle, but not so on CTS, where the LM
alone achieves better performance than prosody using most
of the measurement (except precision). The difference be-
tween models and across CTS and BN domain is also easier
to observe from the DET curves than the ROC curves.

Single metrics versus curves

Table 2 shows that the different measurements for this sen-
tence boundary task are highly correlated for one corpus —
an algorithm is often better than another using many single
metrics. However, one single metric does not provide all the
information, since it is the measure for one particular chosen
decision point. As described earlier, the NIST error rate and
CER cannot determine confusion matrix, or precision and re-
call, as they combine insertion and deletion errors (although
that information can be available). For downstream process-
ing, if a different decision region is more preferable, using
the curves will easily expose such information. For example,
[2] shows that the optimal point for parsing is different from
that chosen to optimize the single NIST error rate (intuitively,
shorter utterances are more appropriate for parsing).

For the PR, ROC, and DET curves, from the discussion in
Section 2, we know that the dominance in one space also
means dominance in other spaces. Additionally, if a curve for
one algorithm is dominant than another one, then the AUC
is greater. However, that AUC is better does not mean that
curves are dominant. Similarly, the AUC comparison for the
PR and ROC curves can be different. For example, compar-
ing HMM and Maxent on both corpora, Maxent has better
AUC in the PR space (not very significant), but not in ROC,
as shown in Table 2.

In many cases, curves for different algorithms cross each other;
therefore it is not easy to conclude that one classifier out-
performs the other. The decision is often based on down-
stream applications (e.g., improve readability, input to ma-
chine translation or information extraction). For this situa-
tion, using both the curves, along with single value measure-
ment is a better idea. For visualization, PR curves expose

information better than ROC, especially for the imbalanced
data set. DET curves are more easily to visualize than ROC
curves and show better the difference between algorithms.

4. CONCLUSIONS

Studies on evaluation for general classification or detection tasks
have been performed in machine learning. In this paper, we use a
real spoken language processing task — sentence boundary detec-
tion, to compare different performance metrics. We have examined
single metric including NIST error rate, classification error rate, pre-
cision, recall, and AUC, as well as decision curves (ROC, PR, and
DET). The three different curves are one-to-one mapping; however,
they have different advantages in visual representation. Some dif-
ferences among algorithms are more visible in one curve than the
others. Generally for the imbalanced data set, the PR curves provide
better visualization than ROC curves. A single metric only provides
limited information. It shows the performance corresponding to one
decision point; whereas decision curves illustrate what model is bet-
ter for a specific region and may be more preferable for downstream
language processing. Note that this study is based on a particular
sentence boundary detection system and its posterior probability es-
timation, therefore the conclusion about the models is system depen-
dent; however the focus in this paper is rather on general analysis on
system evaluation. Furthermore, even though the analysis in this pa-
per is based on sentence boundary detection, the property of this task
is similar to many other language processing applications (e.g., story
segmentation), hence, the understanding of the evaluation metrics is
generalizable to other similar tasks. For future work, it would be in-
teresting to examine the different cost for different errors (MAYBE
DELETE THIS SENT?).
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